

Polyhydroxybutyrate: PHB

PHB is a highly crystalline biodegradable and biocompatible polymer (Tg = 5 °C, Tm = 153°C)

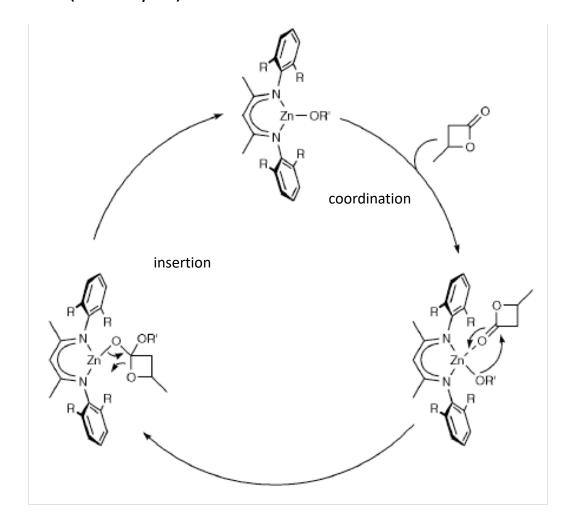
	PLA Dow-Cargill (NatureWorks)	PHBV Monsanto (Biopol D400G – HV= 7 mol%)
Density	1.25	1.25
Melting point (°C) ^a	152	153
Glass transition (°C)a	58	5
Crystallinity ^b (in %)	0-1	51
Modulus (MPa) (NFT 51-035)	2050	900
Elongation at break (%) (NFT 51-035)	9	15
Tensile stress at break or max. (MPa) (NFT 51-035)	-	-
Biodegradation ^c (mineralization in %)	100	100
Water permeability WVTR at 25 °C (g/m²/day)	172	21
Surface tension (γ) (mN/m)	50	-
γ_d (dispersive component)	37	-
γ_{p} (polar component)	13	-

The production of PHBs is intended to replace synthetic non-biodegradable polymers for a wide range of applications:

Target price: 2 euros/kg

Synthetic PHBs

Synthetic PHBs: obtained via ring-opening polymerization of β -butyrolactone and γ -valerolactone (early examples on that matter used Sn(II)-based initiators.



Very active Zn catalysts but obtention atactic PHB

Coates et al. JACS 2002

Similar to that observed in the ring-opening polymerization (ROP) of lactide (*vide supra*)

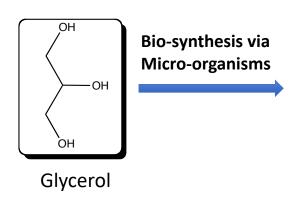
Access to syndiotactic PHBs

Stereoselective ROP of *rac*-BBL by a well-defined yttrium complex

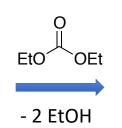
Drawback: the catalyst is highly air-sensitive and Yttrium is a non-biocompatible metal

Carpentier et al. Angew. Chem. Int. Ed. 2006, 45, 2782-2784

First step: thermal degradation (170 °C)


Second step: Bioassimilation by micro-organisms (obtention of CO₂, CH₄ and other biomass products)

Sous-produit de la


synthèse des biodiesels

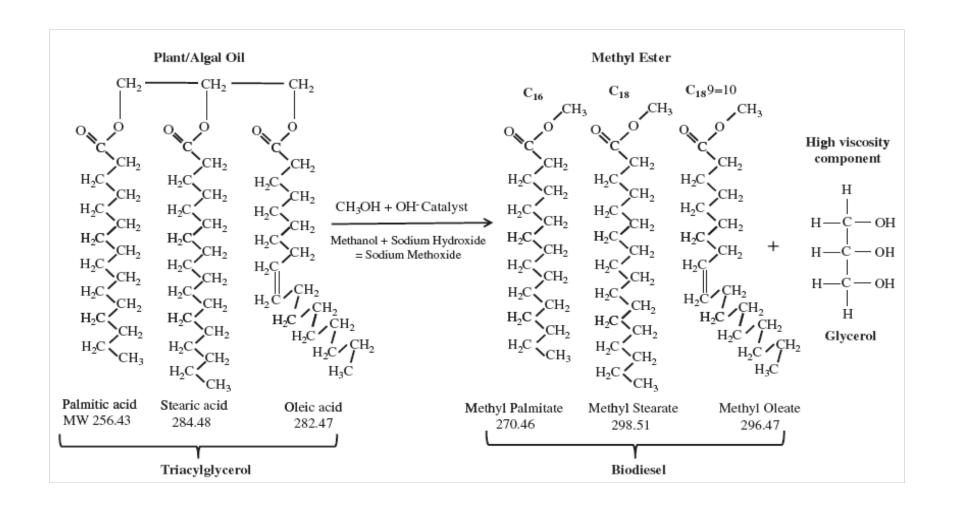
1,3 propanediol: a key component for the synthesis of trimethylene carbonate

HO OH

1,3-propanediol

Trimethylene carbonate

- important monomer for the synthesis of polycarbonates
- Interesting properties


General properties of cyclic carbonates:

- Low toxicity
- High boiling point
- biodegradability

- -Applications as inert solvents
- -Diluants for polyurethanes
- -Hydraulic fluids

Synthesis of Biodiesel

Hydrogenolysis of glycerol

Interest: Access via chemical derivatization of glycerol to small molecules with high added value such as:

Much less toxic than ethylene glycol (for use in cooling systems)

HO OH

1,3-propanediol

Important industrial chemical intermediate

Example: access to 1,2- PPD from glycerol

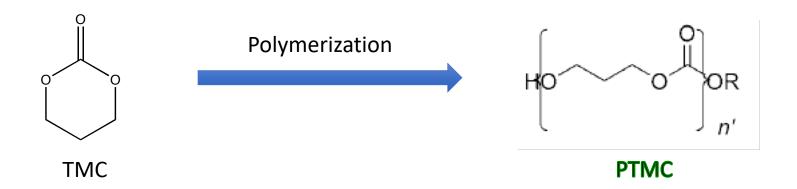
- -A multiple metal catalyst is required as well as high T and P.
- Biocatalysis (enzyme catalysis) is also an option

The case of trimethylene carbonate (TMC)

- TMC: monomer precursor of PTMC

PTMC: poly(trimethylene) carbonate

-Interest of PTMC:


- -More resistant to acid-hydrolysis than polyesters (such as polylactic acid)
- -Useful as diols for incorporation in polyurethanes

Incorporation of poly(carbonate diols) into polyurethanes results in an increased hydrolytic and thermal stability ——— Outdoor stability

Applications: resins in coating, medical devices and implants

Polymerization of carbonates: The case of trimethylene carbonate

Preferred route to access PTMC: ring-opening polymerization of TMC

- High polymerization activity
- Controlled polymerization

Al(OTf)₃- catalyzed Polymerization of TMC

overall reaction

$$n \stackrel{O}{\longleftrightarrow} O + m ROH \xrightarrow{Al(OTf)_3} m \stackrel{O}{\longleftrightarrow} OR \underset{n/m}{\circ}$$
"H-PTMC-OR"

« Immortal » Living ring-opening polymerization of TMC

Obtention of PTMC with controlled properties Via a controllable chain length

monomer activation

exchange/transfer reactions

$$(TfO)_3AI_{n,n}$$

$$n' = 0-n/m$$

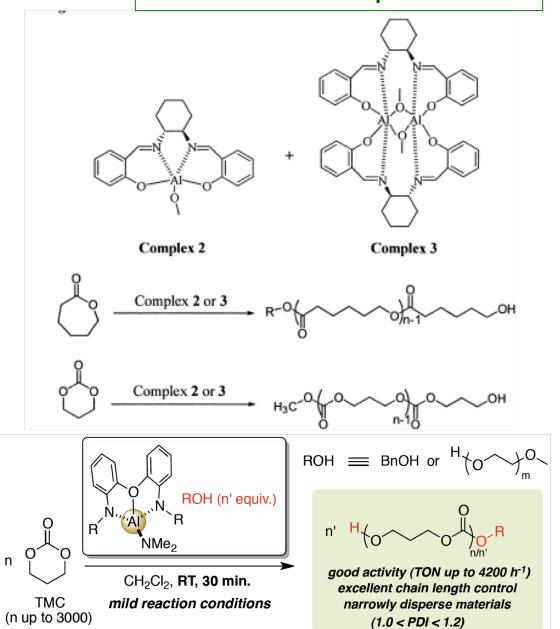
$$"TMC-AI(OTf)_3"$$

$$+ OOOO$$

$$OR$$

$$+ OOOO$$

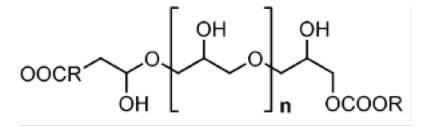
$$OR$$


$$n'$$

propagation

HOOOD R + "TMC-AI(OTf)3"
$$\longrightarrow$$
 HOOOD R $n'+1$ "H-PTMC-OR"

Ring-opening Polymerization of TMC by well-defined metal complexes


Polyglycerol Fatty Acids Esters (PEG)

Chemically formed by esterification of fatty acids with One or several hydroxyl groups of polyglycerol

Examples of PEG

$$\mathsf{OH} \overset{\mathsf{OH}}{\longrightarrow} \mathsf{OH} \overset{\mathsf{OH}}{\longrightarrow} \mathsf{OCOOR}$$

Important nonanionic surfactants

- Important moities with important and various applications:

- Cosmetics
- Food
- Pharmaceuticals

Possible Routes to access Linear PEG

(1) Direct esterification

(2) Polycondensation of RCOOH with glycidol

possible mixture of mono, di, tri, tetraesters etc.

RCOOH +
$$OH$$
 OH OH OH OCOOR

possible mixture of mono, di, tri, tetraesters etc.

(3) Transesterification

Hydrogenolysis of glycerol

Interest: Access via chemical derivatization of glycerol to small molecules with high added value such as:

Much less toxic than ethylene glycol (for use in cooling systems)

HO OH

1,3-propanediol

Important industrial chemical intermediate

Example: access to 1,2- PPD from glycerol

- -A multiple metal catalyst is required as well as high T and P.
- Biocatalysis (enzyme catalysis) is also an option

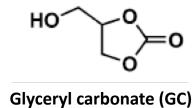
Glyceric acid (GLYA):

- Metabolite in the glycolysis cycle

DHA: used in the manufacture Of tanning products

HPYA: used as a precursor to serine

Oxidation of Glycerol


Oxidation Oxidation secundary alcohol primary alcohol HO' Dihydroxyacetone (DHA) Glyceraldehyde (GLYD) HO' Hydroxypyruvic acid Glyceric acid (HPYA) (GLYA) Glycolic acid (GLYCA) Tartronic acid (TARAC) Oxalic acid (OXALA) Mesooxalic acid (MOXALA)

Problems to be addressed: low yield and selectivity

Glyceryl carbonate

Key low toxic compound employed as:

- solvent, additive, monomer, chemical intermediate
- Moisterizing agent in cosmetics
- Solvant carrier in medecine

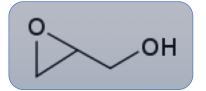
Possible synthetic routes for the synthesis of GC

Glyceryl Carbonate Fatty Acid Esters

Example

$$\begin{array}{c}
O \\
C \\
O - CH_2 - CH
\end{array}$$

Interesting physical and photophysical properties:


- Good thermal and oxidation stability
- Surfactant characteristics
- Good lubricity and biodegradability

Possible candidates as lubricant oleochemical esters

Glycidol

Glycidol

- Used as a stabilizer for natural oils and vinyl polymers
- Applications in chemical synthesis and pharmaceuticals

Classical synthesis

dioxane

Mixture 40 / 60

dioxolane

Glycerol Formal

-Large number of applications as a low-toxic solvent (solvent for paints, insecticide delivery)