

Stereocomplexes of PLA

Structure

PLA stereocomplexes

Extremely interesting BPs (very high Tm ~ 220-230°C) Excellent thermic and mechanical properties

Limitations: no straigthforward synthetic pathways available (Expensive material)

Applications: biomedical devices

poly(L-lactide) poly(D-lactide) Chain models of poly(L-lactide) and poly(D-lactide).

Left-handed Helicoidal chain Right-handed Helicoidal chain

Ikada et al. Macromolecules 1987

Through polymerization catalysis of lactide with a well-defined catalyst

Possibility of a controlled polymerization process affording polymers with well-defined chain length and stereoregularity

Current Approach: Ring-opening polymerization of lactides catalyzed by a well-defined metal complex M-OR

Dimers of lactic acid

Poly(lactic acid)

General Mechanism for the Ring-opening Polymerization of Lactides by Metal Alkoxides Complexes

Important features of the catalyst:

- Lewis acidity of M
- Nucleophilicity de RO-
- Nature of the ligand L

Living polymerization (in the ideal case)

Positive Aspect:

Living Polymerization (control of the polymer chain length)

Negative Aspect:

No discrimination between the two lactide enantiomers

No stereoregularity in the prepared PLA

Properties: New material, extremely high melting point (T_m up to 190 °C) And highly resistant

- Importance of the use of a well-defined and single-site catalyst

Le Borgne, A.; Vincens, V.; Jouglard, M.; Spassky, N. *Makromol. Chem., Macromol. Symp.* **1993**, **73**, 37. Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K. *J. Am. Chem. Soc.* **2002**, **124**, **5938**.

« Stereocomplex Character » in Isotactic poly(lactic acid)

Commercial Poly(lactic acid) T_m = 162 °C Extremely interesting BPs (very high Tm ~230°C) Excellent mechanical properties

Isotactic Stereoblock Poly(lactic acid) (Tm ~ 190 °C)

Inter-molecular Chain interactions Intra-molecular Chain interactions

The « Stereocomplex Character » improves its thermal properties

Enantioselective Polymerization

Principle: In an enantioselective polymerization, one enantiomer of a racemic monomer mixture is preferentially polymerized to give an optically active polymer (with a specific chain stereochemistry)

Major advantage: - Obtention of a polymer with a controlled stereochemistry

The use of enantiomerically pure Al Complexes: Enantioselective Polymerization of Lactides

• Interest: Access to stereoregular PLA polymers

At 50% conversion, ee (unreacted monomer) = 80% ee $k_D/k_L = 20$

UNIVERSITÉ DE STRASBOURG

Formation of new materials via the formation of enantiomeric poly(L-LA) and poly(D-LA) block polymers

Smith et al. *JACS* **2000**, *122*, 1552.

Due to chain transfer during the polymerization process

Isotactic Stereoblock Poly(lactide)

RRRRRRRRRRRRSSSSSSSSSSRRRRRRRRRR

Properties: New material, extremely high melting point (T_m = 187 °C) And highly resistant

Required Features for Stereoregular PLA: Stereoregularity and Low Cost

Importance of the Metal Catalyst

Activity: Mg, Ca, Y > Zn, Sn > Al > Ti, Zr

Stereoregularity: Al > **Zn**, Sn, Y > Ti, Zr > **Mg, Ca**

Toxicity: Sn whereas **Zn**, **Ca**, **Mg** are biocompatible

Cost: Y is an expensive metal

Lactide Monomer

High purity required for high activity (it costs!!!)

Latest Developments: Organocatalytic Polymerization of Lactides

- Interest: use of metal-free catalysts (because of toxicity problems) - no need to remove metal traces prior to polymer processing (costly)
- Approach: use of very nucleophilic organic species to ring-open lactide - the ring-opened species ring-opens another lactide unit and so on....

Most efficient Nucleophiles to date:

Metal-free Lactide Polymerization: Organocatalysis

Atactic PLA

entry	cat.	M/cat.ª	conv ^b	DP¢	PDId
1	2 (OMe)	100	89	89	1.18
2	3 (OEt)	100	94	94	1.28
3	5 (OPyr)	100	99	99	1.27
4	6 (ODEG)	100	98	98	1.34
5	7 (OEGO)	100	84	84	1.21
6	8 (triol)	157	99	156	1.16
7	1 (SIMes) ^e	100	87	87	1.30

Waymouth, Hedrick et al. JACS 2005, 127, 9079.

Mechanism

Access to unprecedented Cyclic PLA materials

UNIVERSITÉ DE STRASBOURG

Entry	t [s]	M/I ^[a]	Conv. [%] ^[b]	M₁ [kDa] ^[c]	PDI ^[d]
1	30	100	75	15 (8.4)	1.16
2	10	100	35	7.3 (4.2)	1.15
3	60	200	73	18 (11)	1.17
4	20	200	32	9.9 (5.8)	1.28
5	900	200	92	26 (15)	1.35
6 ^[e]	120	100	90	22 ^(f)	1.27

Cyclic PLAs are more thermally stable linear PLAs

Waymouth, Hedrick et al. Angew. Chem. Int. Ed. 2007, 46, 2627

Mechanism

Scheme 2. Proposed mechanism for NHC-mediated zwitterionic polymerization of lactide.

Organocatalysis: ROP of lactide thanks to supramolecular recognition

Overview of Agro-resources based Polyesters

From: P. Bordes et al. / Progress in Polymer Science 34 (2009) 125–155

PHAs are naturally produced by micro-organisms from various carbon sources (typically from the sugar family)

Some micro-organisms may accumulate PHA From 30% to 80 % of cellular dry weight

Depending on the carbon source, different monomers and thus Polymers may be obtained.

Polyhydrobutyrate (PHB) is the main polymer of this family

(Biopol, Monsanto, 20% HV)

Major problem: the extraction and recovery steps are expensive

- First observed in bacteria by Lemoigne et al. in the 1920s

Optically active macromolecules (PHBs) used as a « carbon reserves » by bacteria

Figure 2. Transmission electron micrograph of ultrathin section of Azotobacter chroococcum cell treated with phenylacetic acid. From

Biosynthesis of PHB

Implicated enzymes:

- (1) ketothiolase: dimerizes acetyl-CoA
- (2) reductase: hydrogenation to (R)-3-hydroxy-butyryl-CoA
- (3) Synthase (or polymerase): polymerisation: access to PHB

Polymerisation initiation and propagation

Two thiol groups within the polymerase enzyme are believed to be involved in the initiation and propagation polymerisation process.

PHB is a highly crystalline biodegradable and biocompatible polymer (Tg = 5 °C, Tm = 153°C)

	PLA Dow-Cargill (NatureWorks)	PHBV Monsanto (Biopol D400G – HV= 7 mol%)
Density	1.25	1.25
Melting point (°C) ^a	152	153
Glass transition (°C) ^a	58	5
Crystallinity ^b (in %)	0-1	51
Modulus (MPa) (NFT 51-035)	2050	900
Elongation at break (%) (NFT 51-035)	9	15
Tensile stress at break or max. (MPa) (NFT 51-035)	-	-
Biodegradation ^c (mineralization in %)	100	100
Water permeability WVTR at 25°C (g/m²/day)	172	21
Surface tension (γ) (mN/m)	50	-
γ_d (dispersive component)	37	-
γ _p (polar component)	13	-

Coenzyme A

