Systematic Chemistry of elements s and p

I - s block metals

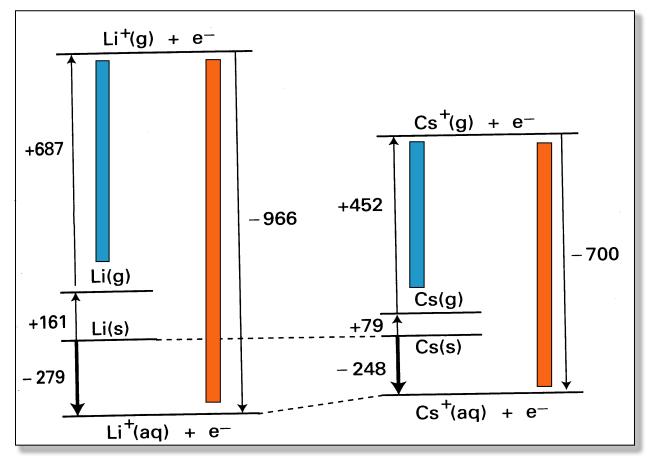
- Presence of cations A⁺ ou B²⁺ in minerals and natural water. Some are essential to life metabolism (ex: K⁺, Ca²⁺).

- Low ionization energies and vaporization enthalpies

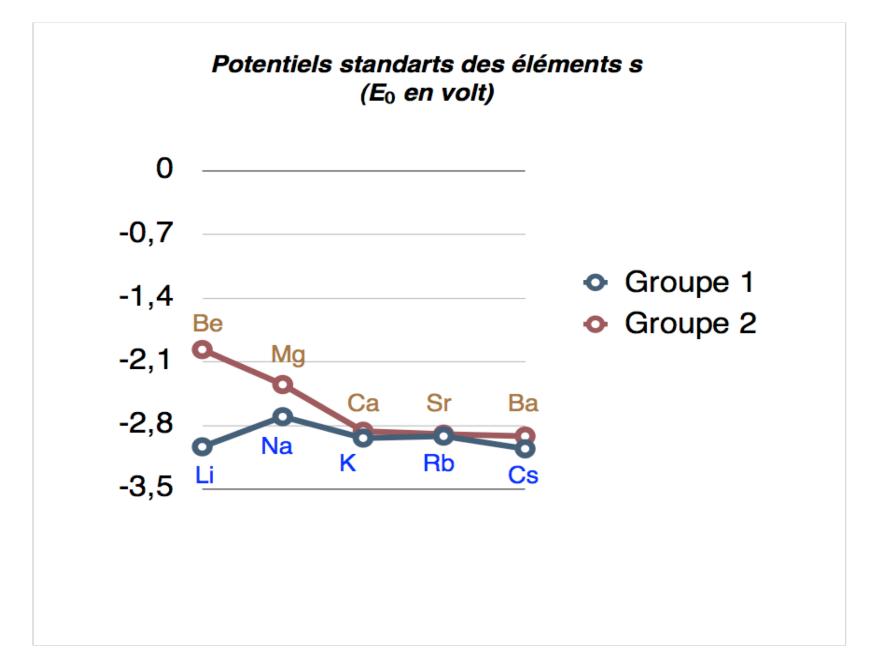
Labile valence electrons

- Strong reducing agents: vigorous reaction with H₂O(M +H₂O --> H₂)
- Oxydation degree: +1 for alcalins et +2 for earth-alcalin metal ions.
- In the absence of air and moisture, Na-anions are accessible.
- The coordination of "hard » polydentate ligands (O- ou N-based) typically afford stable metal chelates.

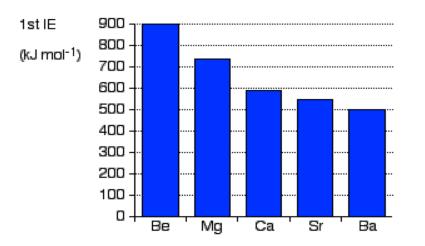
Redox Reactions

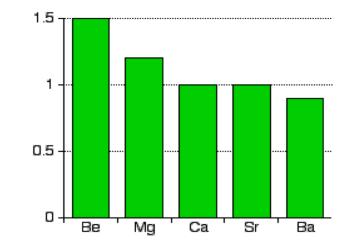

Group 1: $M(s) + H_2O \longrightarrow M^+(aq) + OH^-(aq) + 0.5 H_2(g)$ Group 2: $M(s) + H_2O \longrightarrow M^{2+}(aq) + 2OH^-(aq) + H_2(g)$

Why do these metal spontaneously inflame upon contact with H₂O?

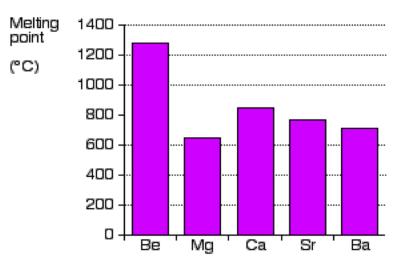

- Low melting point metals, the liquid provides a clean surface, which is extremely favorable to the redox reaction to occur (highly exothermic).

- In the case of beryllium and magnesium, formation of a protecting layer of metal oxide.


 \mathbb{R} E° all close to one another : -3 V (except for Be : -1.97V and Mg : -2.36 V: small cations). Such a uniformity arises from a compensation between the enthalpie of formation de M⁺(g) and the enthalpie of hydratation de M⁺. (see thermo cycles thermo on the next diapo).


Compensation between the energie of ionisation and the energie of hydratation. (values give in Kj.mol⁻¹)

General Tendency: Exemple of group 2 metals



First Ionisation Energy of the Group 2 elements

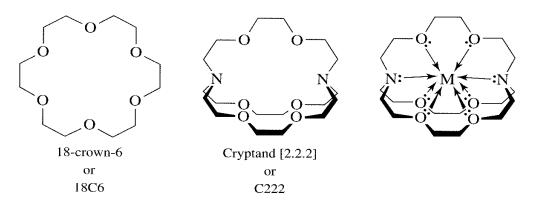
Electronegativity of the Group 2 elements

Melting Points of the Group 2 elements

C) <u>Composés binaires</u>

Despite similar E_0 values, typical distinct behavior is observed for some alcalin and earth-alcalin metals Example: : the only stable nitride is Li_3N . Specific reactions are also observed with O_2 .

<u>Coordination</u> : mostly octahedral coordination in aqueous medium, except for Li⁺ (small cation) in some crystalline compounds (Li₂O, antifluorine-type structure). Cation Be²⁺, small and highly charged (2+) affords compounds with some covalent character with typically four-coordinated Be centers.

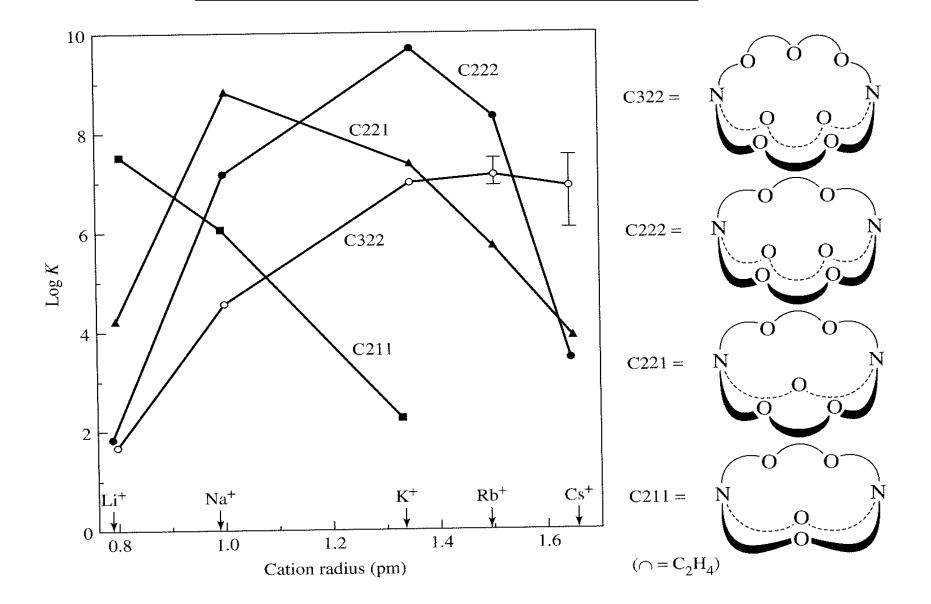

Possibility of catenation (formation of chains) Examples :

- Na₂O₂ (peroxyde ion O₂²⁻), Li₂O (oxyde ion O²⁻), KO₂ (superoxyde ion O₂⁻).
- Stabilisation of peroxydes et superoxydes by larger cations.

Complexes Formation

- Metallic ions of bloc s (M⁺ et M²⁺) are considered as "hard" Lewis acids and can thus form complexes via Coulombian interactions with "hard" Lewis bases (small electronegative electron donors: O and N)

- Formation of remarquable complexes with polydentate ligands such as ether-crown and cryptand ligands.

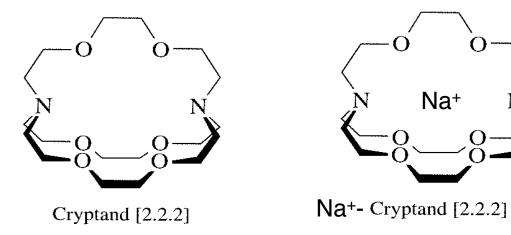


These ligands are « sterically » selective for a given M⁺ ou M²⁺ cation

Necessary adequation between the size of M^+ ou M^{2+} and that of the hosting cavity

Possibility of selective complexation

Formation Constants of cryptand complexes As a function of cation size



Alcalides anions M⁻

Conditions: moisture- and oxygen-free environment

First reported example: Anion Na⁻ formed by reaction of Na(s) with cryptand [2.2.2]

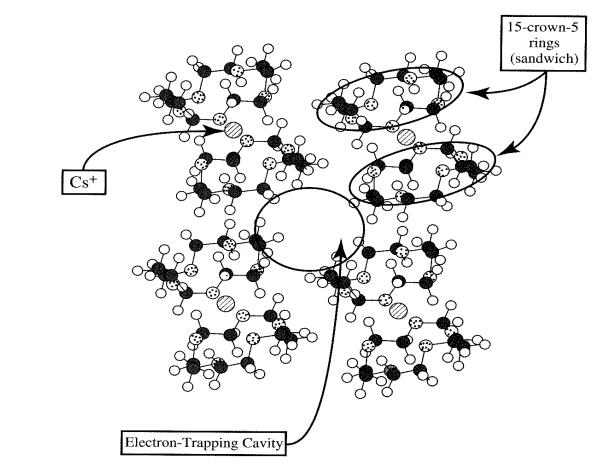
 $2 \operatorname{Na} + \operatorname{N}\{(C_2H_4O)_2C_2H_4\}_3 \operatorname{N} \longrightarrow [\operatorname{Na}\operatorname{N}\{(C_2H_4O)_2C_2H_4\}_3\operatorname{N}]^+ + \operatorname{Na}^$ cryptand[2.2.2] [Na(cryptand[2.2.2])]⁺

Full dissociation Of the anion and cation

Solutions of solvated electrons and Electrides

Alcalin metals are soluble in etheroxyde solvents and some amines to yield solutions of solvated electrons

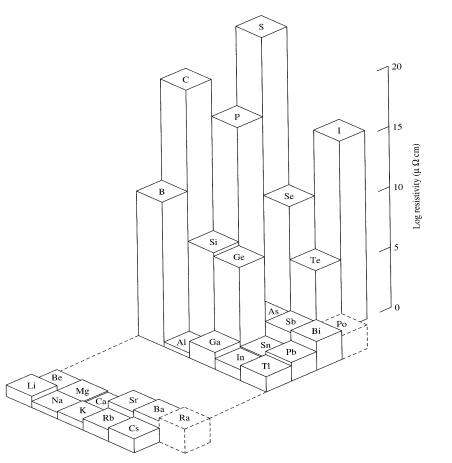
Examples: Na is soluble in liq. NH_3 ($T_{eb} = -33^{\circ}$ C) to afford une solution of electrons solvated by NH_3


$$Na + x NH_3 \longrightarrow Na^+ + e(NH_3)_x^-$$

- Diluted solution (dark blue): excellent reducting properties
- Concentrated solution (bronze appearance): delocalized electrons like in a metal.

Electrides: Solid compounds containing solvated electrons. The complexation by crown-ethers of alcalin ions (ex: Cs⁺) may allow the formation of stable electrides.

Electride consisting of Cs⁺-[15-éther-5] anions and « free » electrons


Éther-couronne 5-15

X-ray determined molecular structure

Main group Elements of Group p

These elements display diverse properties going from the more metallic elements (AI, Ga, In, TI, Sn ,Pb, Bi) to « metalloides » (Si, B, Te) and then non-metallic elements (noble gas, halogens)

Electrical resistivity of main group elements

Main group Metals of the p block

- Al, Ga, In, Tl (group 13)
- Sn et Pb (group 14)
- Bi (group 15)

Lower oxydation states are favored for heavier metals (complicated reasons: "Inert pair effect").

- Common oxydation states: TI(I), Pb(II) et Bi(III) ("Inert pair effect")

Thus,TI(III), Pb(IV) et Bi(V) compounds are readily reduced.

II - The groups of boron (13/III) and carbon (14/IV).

- Various physico-chimical properties.
- Great importance in industry and biosphere.

- **Carbone** (biosphere) \rightarrow organic chemistry, binary compounds with metals and non-metals, organometallic chemistry

- **Bore** (earth's crust)--> combined with O and/or AI, it is an important component of the earth's crust

Other elements (AI, Si, Ga, Ge, In, Sn, TI, Pb) --> high tech industry, semi-conductors

A) General considerations

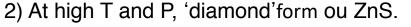
- Going down each column: --> non-metals --> semi-conductors --> metals.
- Lighter elements have an electronegativity closer to that of hydrogen: they thus form numerous covalent compounds (hydrogenated and alkylated, for instance).

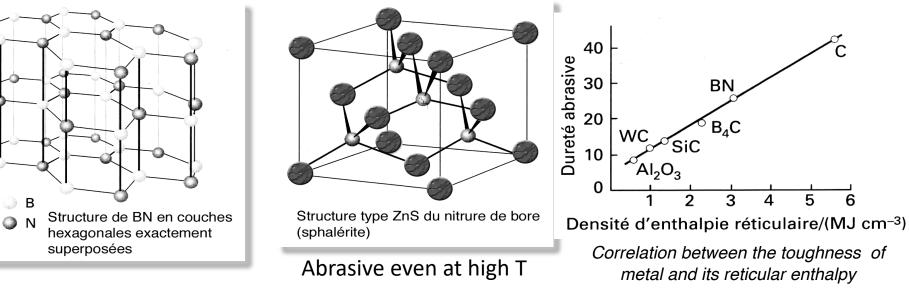
IA) <u>Group 13</u>

Group 13 metals all display a shiny appearance.

T_m (°C) : Al (660) - Ga (30) - In (157) - Tl (303)

NB: In solid Ga, existence of Ga2 units that remain in the melted metal \Rightarrow Tm = 30 $^{\circ}$.

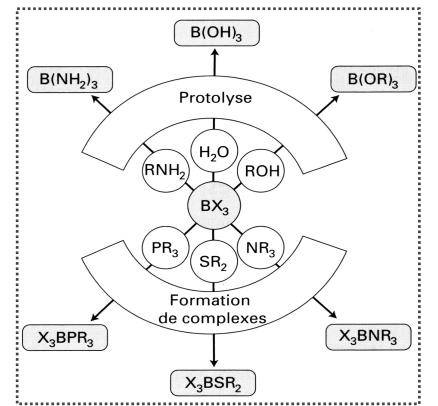

Métal	Minéraux principaux	Méthode d'extraction			
Groupe 13					
Aluminium	Bauxite Al ₂ O ₃ .xH ₂ O	Électrolyse (procédé Hall)			
Gallium	Traces dans les minerais d'aluminium et de zi	nc			
Groupe 14					
Étain	Cassitérite SnO ₂	$SnO_2 + C \longrightarrow Sn + CO_2$			
Plomb	Galène PbS	$PbS + O_2 \longrightarrow PbO + SO_2$			
		suivi de : 2 PbO + C \longrightarrow 2 Pb + CO ₂			
Groupe 15					
Bismuth	Traces dans les minerais sulfurés de zinc, de cuivre et de plomb				

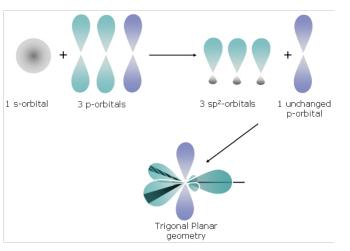

<u>Combining Boron with nitrogen: synthesis of boron nitride, an important</u> <u>material.</u>

$$B_2O_3(l) + 2NH_3(g) \xrightarrow{1200^\circ C} 2BN(s) + 3H_2O(g)$$

- Two types of structure for BN :

1) Type graphite, with hexagonal planes facing one another.

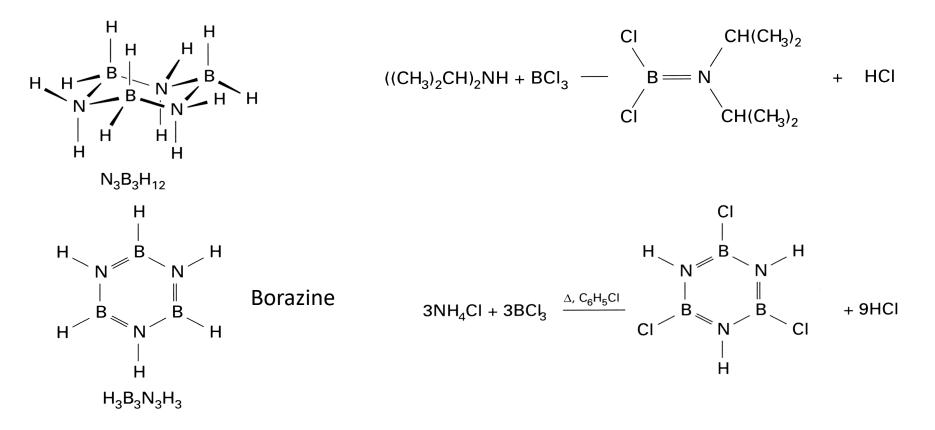



- Electrical insulator

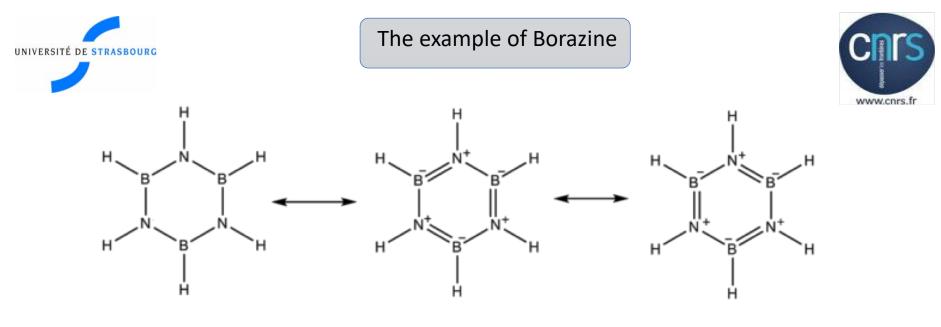
- Used as lubricant

2- Boron Compounds with electronegative elements

- Boron tri-halide species BX₃ (B(III): common oxidation state).
 6 electrons of valence at B(III) and a vacant orbital
- Used as reagents and Lewis acids in catalysis.
- Preparation: direct reaction of B with X_2 at high T/P.
- Structure of BX₃: monomeric, trigonal plane geometry triangle plan at B(III).
- Boron halide compounds with B-B bonds are known.



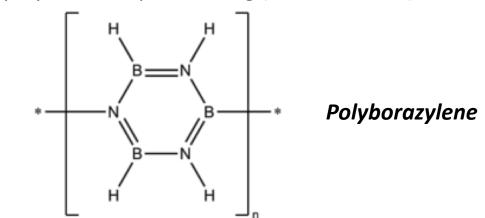
sp²-hybridized B(III) center

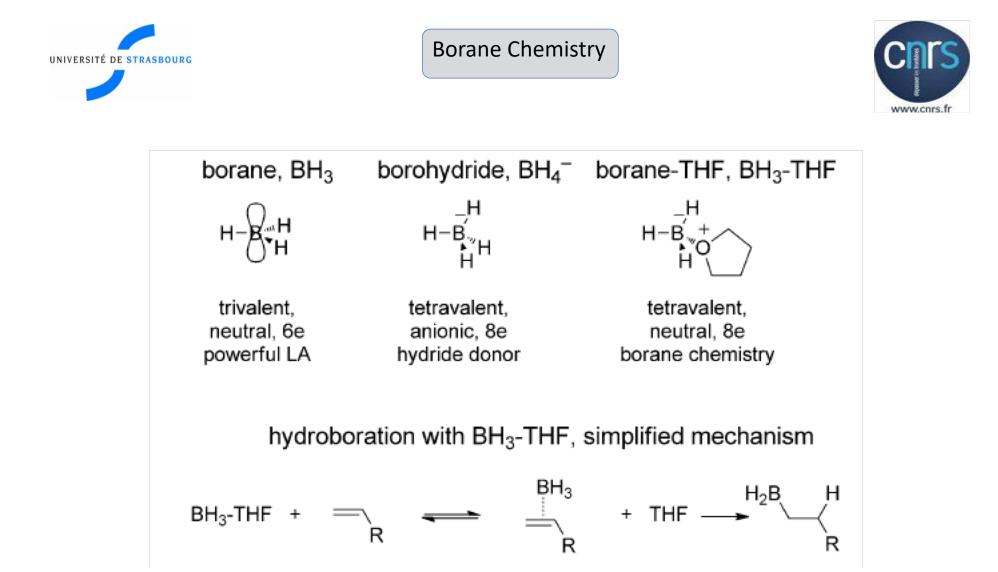

* B-N and C-C bonds are isoelectronic.

$$\frac{1}{2}B_2H_6 + N(CH_3)_3 \longrightarrow H_3BN(CH_3)_3$$

- Amino-borane species can be synthesized according to the reaction depicted below:

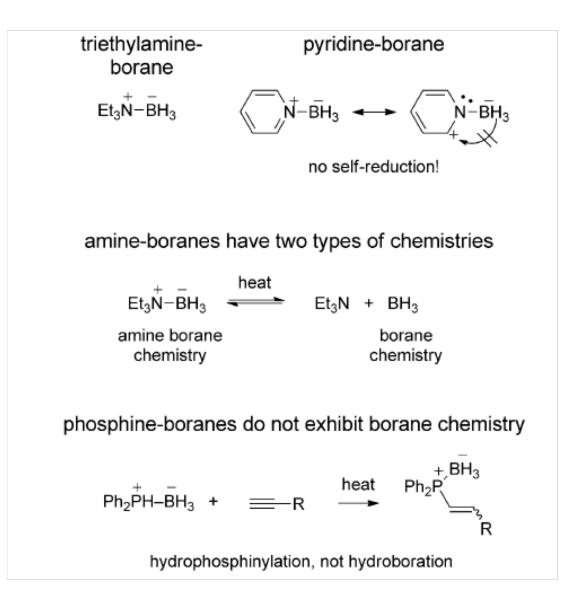
- Despite some structural analogies, the properties/reactivity of amino-borane species is quite different from C-C bond species.


- Nucleophilic attack at the nitrogen centers
- Electrophilic attack at the boron centers



Reaction with HCl to form $(B_3H_3)(N_3H_6)Cl_3$

Borazine polymerizes upon heating (H₂ elimination)



Amino- and Phosphino-Boranes: fundamental chemistry

Groupe 13 metal species (AI, Ga, In): the most common oxidation state is +III

Trihalido metal species MX_3 are strong Lewis acids. Al (metal) and Ga (metal) directly react with HCl ou HBr as follows:

 $2 AI(s) + 6 HCI(g) -> 2 AICI_3(s) + 3H_2(g)$

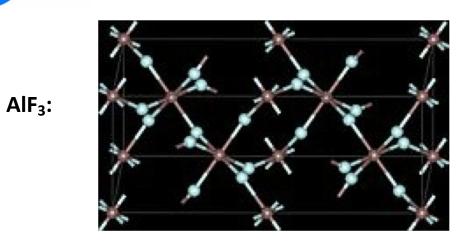
- AIF₃ et GaF₃ : hard solids, high T_m , low solubility. Formation of hypervalent coordination species: Na₃AIF₆ ou Na₃GaF₆

Relative to « hard » Lewis bases (O, N), the Lewis acidity decreases upon going down group 13 column

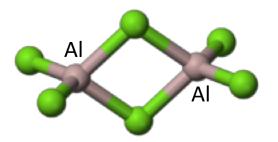
 $BCI_3 > AICI_3 > GaCI_3$

Relative to « soft » Lewis bases (S), the Lewis acidity increases upon going down group 13 column

 $GaX_3 > AIX_3 > BX_3$

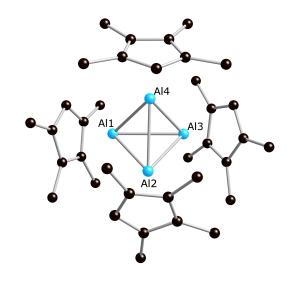

Hypervalent compounds are observed for Al(III) and heavier gp 13 elements

C = A = N (C = A) - O = C = A = (N (C = A))


Structure of Aluminum halides

Each Al center is hexa-coordinated Each F coordinates to two Al centers

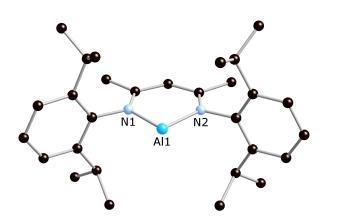
AICl₃, AIBr₃, AII₃: dimeric in solution



AlCl₃ commonly used as Lewis acid for the mediation of various organic reactions

- A few AI(I) compounds are known to be stable at room temperature

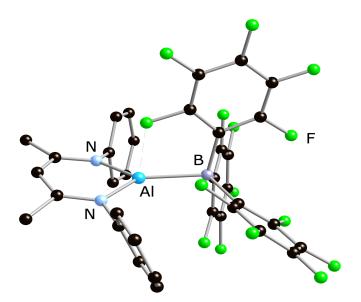
First example of X-ray determined Al(I) species (stable at RT)


Angew. Chem., Int. Ed. Engl. 1996, 35, 129.

- The stability of the +I oxidation state increases going down the gp 13 column
- Monohalides GaX, InX and TIX are known for X = CI, Br, I

A Monomeric Al(I) compound

First example of a monomeric Al(I) species


Angew. Chem. Int. Ed. 2000, 39, 4274.

Lewis acidic and Lewis basic Al center

Amphoteric character

Al carbene analogue

Adduct of $B(C_6F_5)_3$

Oxydes et Jewelry

- Al_2O_3 (α alumine) is the most stable form of aluminum oxide.
- Hexagonal compact (HC) stacking in which the Al³⁺ ions occupy 2/3 of the octahedral sites.

Also named Corundum--> sapphire (blue) : charge transfer from the Fe^{2+} et Ti⁴⁺ ions (impurities).

• Ruby : α Alumine in which part of the Al³⁺ ions are replaced by Cr³⁺.

• Other forms of Alumine α exist (obtained by dehydration of Al hydroxyde at 900° C): the majority of Al₂O₃ is used for the production of Al(metal) via the Hall-Héroult process.

- Amorphous Al_2O_3 : metastable form with a large specific surface area Presence de acidic and basic sites:--> widely used in heterogeneous catalysis.

Élément	l/kJ.mol ^{−1}	χ•	r _{cov} /ņ	r _{ion} /Ň	Aspect et propriétés	Degrés d'oxydat courants
Groupe13/II.	I				m ét germanium	dolla ti
В	899	2,04	0,85		Sombre Semiconducteur	3
Al	578	1,61	1,43	0,54	Métal	3
Ga	579	1,81	1,53	0,62	Métal, $F = 30^{\circ}C$	1, 3
In	558	1,78	1,67	0,80	Métal mou	1, 3
Tl	589	2,04	1,71	0,89	Métal mou	1, 3
Groupe 14/I	V					
C	1086	2,55	0,77		Isolant dur (diamant) Semimétal (graphite)	4
Si	786	1,90	1,17	0,40	Semiconducteur dur	4
Ge	760	2,01	1,22	0,53	Métal	2, 4
Sn	708	1,96	1,40	0,69	Métal	2, 4
Pb	715	2,33	1,75	0,92	Métal mou	2, 4

Group 14 elements

Carbone: extracted from mines as diamonds or graphite Coke, black carbon: less pure forms

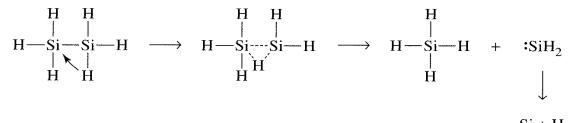
Silicium: produced in a pure form from the reduction of SiO₂ with C.

 $SiO_2 + 2 C \longrightarrow Si(s) + 2 CO$

Si: widely used in modern semi-conductor industry (small band gap = 1.12 eV)

- SiH₄: tetrahedral structure, stable but less than CH₄

 Si_nH_{2n+2} (silanes) are much less stable than alkanes


Pourquoi?

- The Si-Si bond is less strong than the C-C bond
- Si est less electronegative and larger than C

More reactive towards nucleophiles

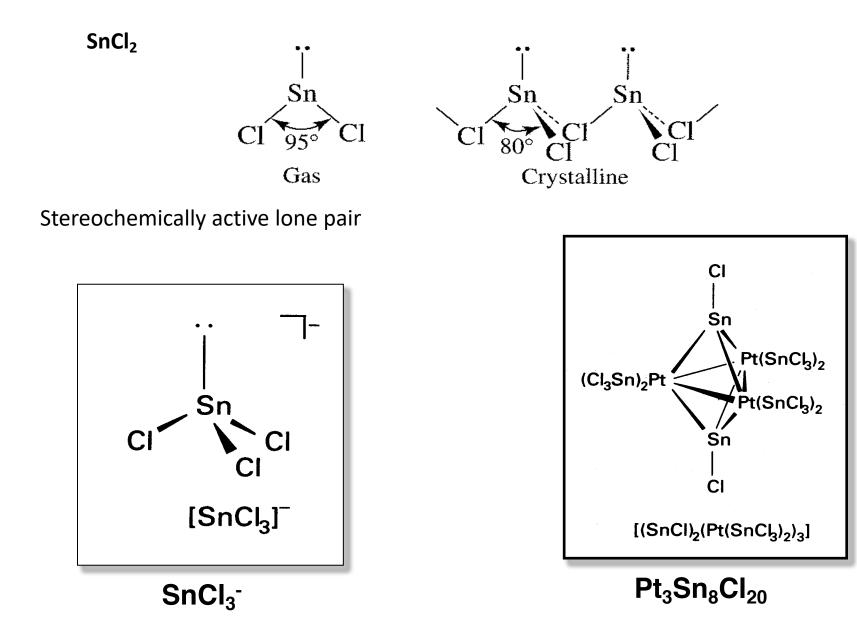
Silanes decomposition

Tin and Lead (Group 14)

<u>Sn</u>:

- Sn exists in two allotropic forms:

a"diamond" form (α) stable at T < 13 ° C a metal form (T > 13 °C), much more stable

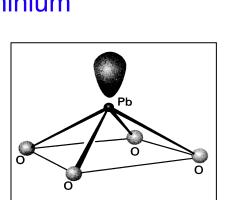

- Oxidation state: +2 ou +4

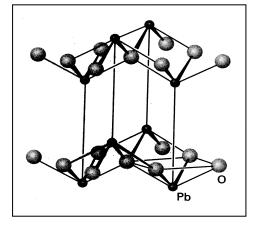
In aqueous medium, Sn²⁺ (which bears a lone pair of electrons) is a soft reducting agent.

$$Sn^{2+}(aq) + \frac{1}{2}O_2(g) + 2H^+(aq) \xrightarrow{E^\circ = 1,08\nu} Sn^{4+}(aq) + H_2O$$

- SnX_4 compounds (X = CI, Br, I) exhibit a covalent character.

- Sn (II) et Sn (IV) have a rich coordination chemistry


Pb: Lead oxide compounds are technologically important....but also very toxic


Oxidation state: +2 (the most stable) and +4

--> The structure de PbO also features a stereochemically active lone pair on Pb. Pb²⁺ tetra-coordinated (by O).

--> Mixed Valence Oxides: Pb₃O₄'minium' Structure of Pb₃O₄

Despite its toxicity, this red-orange pigment is produced industrially and used in the painting industry.

Sn and Pb :

- Oxidation +2 et +4 possible for various Sn and Pb compounds.
- Pb(IV) is very oxydant.
- Sn(II) et Pb(II) both display a stereoactif lone pair

Illustrate the role of kinetics and thermodynamics at work in electrochemical cells

Charged state : cathode = PbO_2 et anode = Pb. In diluted H_2SO_4 , PbO_2 et Pb are insoluble.

Cathodic reduction and anodic oxidation

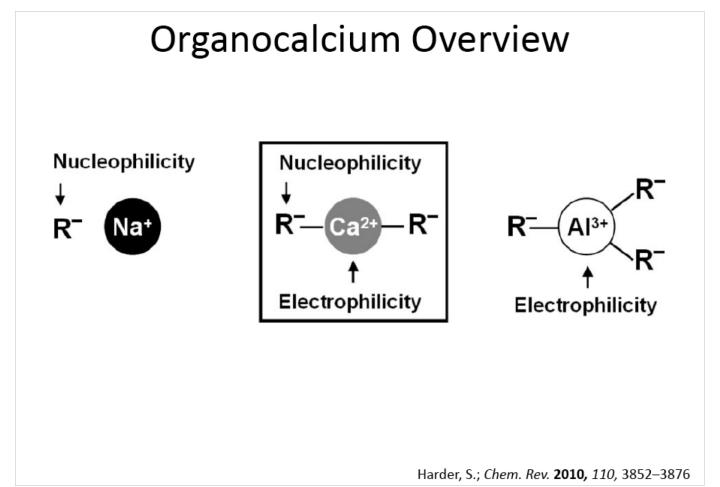
While working: at the cathode Pb(IV) --> Pb(II) (PbSO₄)

 $PbO_2(s) + H_2SO_4 + 2H^+(aq) + 2e^- -> PbSO_4(s) + 2H_2O (E^\circ = 1.69 V)$

At the anode Pb(0) --> Pb(II) (PbSO₄) Pb(s) + H₂SO₄ --> PbSO₄(s) + 2H⁺(aq) + 2e⁻ (E^o = -0.356 V)

Global Reaction:

 $PbO_2(s) + 2H_2SO_4 + Pb(s) --> 2PbSO_4(s) + 2H_2O$


Difference of potential: 2 volts. (>> to that of H_2O : 1,23 V)

Explanation : slow reaction with H₂O (slow kinetics)

Inorganic and Organometallic compounds of Groups 1 and 2: Applications in catalysis

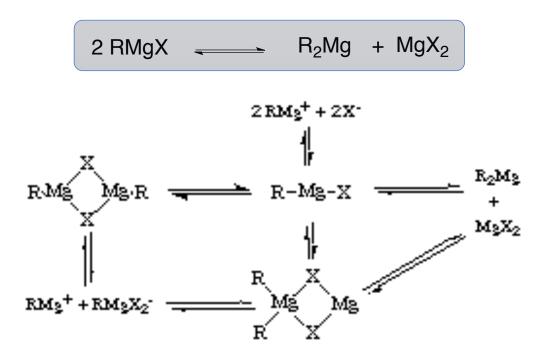
The Specific case of Calcium

Advantages of Calcium

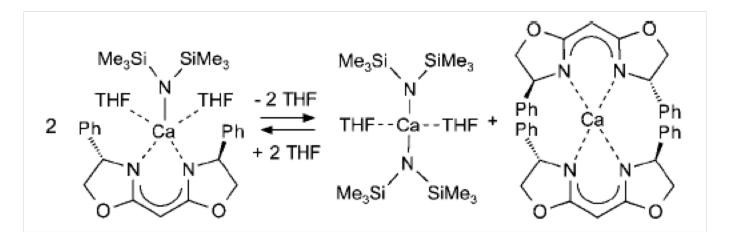
- Abundant : 3.4 % of Earth's crust (one of the cheapest commerically available metals, <\$4/kg)
- Non-toxic: Human tolerance of Ca is high (≈1 g/day is considered safe)
- Associated environmental hazards are low: easily convertible to limestone (CaCO₃)and slaked lime (Ca(OH)₂) for disposal

Harder, S.; *Chem. Rev.* **2010**, *110*, 3852–3876 Westerhausen , M.; *Z. Anorg. Allg. Chem.* **2009**, *635*, 1332

- Large coordination numbers of calcium leads to insoluble aggregates
- Low reactivity of Ca metal, compared to very high reactivity of C-Ca bonds



Inorganic and organometallic Ca compounds may readily undergo ligand exchange reactions in solution


- First discovered with organomagnesium derivatives

The nature of the R and X substituents, solvent and the presence of Lewis bases influence the Schlenk equilibrium

An example of the Schlenk equilibrium with organocalcium compounds

The presence/absence of THF directly influences the K_{eq} of the Schlenk equilibrium

Preparation of OrganoCalcium compounds

1) Direct route from metal

- Ca + 2 $(Me_3Si)_2NH \longrightarrow Ca[N(SiMe_3)_2]_2 + H_2$ (b)
- $Ca + Sn[N(SiMe_3)_2]_2 \longrightarrow Ca[N(SiMe_3)_2]_2 + Sn \quad (c)$
- Ca + COT \longrightarrow Ca²⁺ COT²⁻ (d)

2) Salt metathesis

 $Cal_2 + 2 KBn \longrightarrow CaBn_2 + 2 KI$ (e)

3) Deprotonation (acid-base reaction)
CaBn₂ + 2 Ph₃CH → Ca(CPh₃)₂ + 2 BnH (f)