Vous êtes ici : Home   >   Research Groups   >   [OMECA] Objets, MEtaux et CAtalyse

[OMECA] Objets, MEtaux et CAtalyse

Head of the research group

Professeur à l'Université de Strasbourg

Year of creation of the group- 2017

Group's website



Le Bel Institute, 9th floor South

Secretarial and acccounting services provided by

Geneviève STOLL
email: genstoll@unistra.fr
Phone : +33 (0)3 68 85 13 64

Permanent members

    Professeur à l'Université de Strasbourg
    email: desageelmurr@unistra.fr
    +33 (0)3 68 85 16 39
  • Aurélie GUENET
    Maître de conférences à l'Université de Strasbourg
    email:  aguenet@unistra.fr
    +33 (0)3 68 85 12 61
  • Geordie CRESTE*
    Assistant Ingénieur au CNRS
    email : creste@unistra.fr
    Phone : +33 (0)3 68 85 11 33

* travaille pour plusieurs équipes

Non-permanent members

PhD students

  • Agnideep DAS
  • Cheriehan HESSIN

Description of the research group

Our research aims at developing catalytic systems and molecular architectures incorporating structures able to perform electronic transfer (redox-active). These biomimetic structures draw inspiration from the redox relays found in metalloenzymes and we aim to translate this concept in larger catalytic or organometallic contexts.

We seek to understand and use electronic transfers taking place within an organometallic complex bearing redox-active ligands. Possible applications of this work include multi-electronic steps necessary for the activation of chemical species such as small molecules, introduction of fluorinated motifs useful in medicinal chemistry and C–N bond formation by earth-abundant metals.

The OMECA team is located in the Institut de Chimie de Strasbourg (UMR 7177) and welcomes students who wish to enrol in a PhD program at the Université de Strasbourg. In the OMECA team, you will get technical and theoretical training in organometallic, inorganic and organic chemistry, and use several analytical and spectroscopic techniques (NMR, EPR, X-ray, UV-vis...).

The OMECA team has established collaborations with the Université de Lille, Université d’Aix-Marseille, Université Pierre et Marie Curie and the Ecole Normale Supérieure.

Research topics

  • Ligands and redox catalysis
  • Electronic engineering of nano-objects (nanoparticles)
  • Unconventional reactivities in organometallic chemistry and catalysis
  • First-row transition metals (Fe, Cu, Ni)
  • Spin catalysis

Selection of key publications


M. Desage-El Murr
Nature is the Cure: Engineering Natural Redox Cofactors for Biomimetic and Bioinspired Catalysis
ChemCatChem 2019, doi: 10.1002/cctc.201901642
Selected as Hot Paper: doi: 10.1002/cctc.201901642


Y. Ren, J. Forté, K. Cheaib, N. Vanthuyne, L. Fensterbank, H. Vezin, M. Orio, S. Blanchard, M. Desage-El Murr
High-Performance Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State
2019, ChemRxiv preprint, https://doi.org/10.26434/chemrxiv.8965475.v1

Y. Ren, K. Cheaib, J. Jacquet, H. Vezin, L. Fensterbank, M. Orio,S. Blanchard, M. Desage-El Murr
Copper-catalysed aziridination with redox-active ligands: molecular spin catalysis
Chem. Eur. J. 2018, doi: 10.1002/chem.201705649

ref2J. Jacquet, K. Cheaib, Y. Ren, H. Vezin, M. Orio,S. Blanchard, L. Fensterbank, M. Desage-El Murr
Circumventing metallic intrinsic reactivity: radical generation with redox-active ligands
Chem. Eur. J. 2017, 23, 15030–15034


J. Jacquet, P.Chaumont, G. Gontard, M. Orio,H. Vezin, S. Blanchard, M. Desage-El Murr, L. Fensterbank
C–N bond formation from a masked high-valent copper complex stabilized by redox non-innocent ligands
Angew. Chem. Int. Ed. 2016, 55, 10712–10716


J. Jacquet, S. Blanchard, E. Derat, M. Desage-El Murr, L. Fensterbank
Redox-ligand sustains controlled generation of CF3 radicals by well-defined copper complex
Chem. Sci. 2016, 7, 2030–2036. Communiqué sur le site de l’Institut de Chimie du CNRS «En direct des laboratoires» www.cnrs.fr/inc/communication/direct_labos/desage.htm.


J. Jacquet, E.  Salanouve, M. Orio, H. Vezin, S. Blanchard, E. Derat, M. Desage-El Murr, L. Fensterbank
Iminosemiquinone radical ligands enable access to a well-defined redox-active CuII–CF3 complex
Chem. Commun. 2014, 50, 10394–10397