Vous êtes ici : Accueil   >   Actualités de l'institut : L'équipe IFM décroche "17 millions d'heures de calcul"

L'équipe IFM décroche "17 millions d'heures de calcul"

mars 26 2018

L’Institut de Chimie de Strasbourg est heureux de vous annoncer que l’équipe IFM (Laboratoire d’Ingénierie des Fonctions Moléculaires, UMR 7177) vient de décrocher « 17 millions d’heures de calcul » sur un projet européen PRACE (Partnership for Advanced Computing in Europe, http://www.prace-ri.eu) pour l’analyse computationnelle du moteur moléculaire myosine.
La mission de PRACE est d’offrir à des projets très compétitifs (dans toutes les disciplines) des ressources de gestion de données et des services dans le but d’améliorer la compétitivité européenne.

Nous tenons à féliciter Florian Blanc, Adrien CERDAN (Doctorants du laboratoire IFM) ainsi que Marco Cecchini (Responsable du laboratoire IFM) qui ont tous les trois contribué à ce succès.


The Institute of Chemistry of Strasbourg is pleased to announce that the IFM group (Laboratoire d’Ingénierie des Fonctions Moléculaires, UMR 7177) has been awarded "17 million CPU hours " on a European project PRACE (Partnership for Advanced Computing in Europe, http://www.prace-ri.eu) for the computational analysis of the myosin molecular motor.
PRACE's mission is to provide world class computing and data management resources and services to highly competitive projects (in all disciplines) with the goal of improving the European competitiveness.

We would like to congratulate Florian Blanc, Adrien CERDAN (PhD students from the IFM group) as well as Marco Cecchini (Head of the research group) who all contributed to this success.


Find below an abstract of tha awarded project :

"Elucidating chemo-mechanical coupling in the myosin biomolecular motor with atomic resolution”.

"The development of artificial molecular machines is an exciting avenue in nanotechnology. Chemists have successfully synthesized prototypical motors, but none of them even approaches the complexity or the efficiency of their biological versions, which have been fine-tuned by Evolution. Here, we focus on the biomolecular motor myosin and aim at a mechanistic understanding of the recovery stroke, the functional step that couples ATP hydrolysis to the re-priming of the motor. Recent X-ray crystallography and MD simulations of myosin VI by us have indicated the existence of a novel intermediate along the recovery stroke that is consistent with a ratchet-like mechanism. Intrigued by these observations, we set out to provide a molecular understanding of chemomechanical transduction in myosin using the string method with swarms of trajectories. The energetics of the transition will be explored by bias-exchange umbrella sampling along the optimized string. This analysis will provide a mechanistic understanding of the recovery stroke with unprecedented resolution and unveil how myosin motors can operate in a Brownian, fluctuating environment. The analysis on myosin VI will be complemented by the string optimization of the recovery stroke of the prototypical Dictyostelium discoideum myosin II, to compare processive versus non-processive molecular motors. The elucidation of the principles underlying myosin’s function will be crucial for the development of bio-inspired synthetic molecular machines."

graphical abstract